3.4.57 \(\int \frac {\tan ^4(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx\) [357]

3.4.57.1 Optimal result
3.4.57.2 Mathematica [C] (verified)
3.4.57.3 Rubi [A] (warning: unable to verify)
3.4.57.4 Maple [B] (verified)
3.4.57.5 Fricas [B] (verification not implemented)
3.4.57.6 Sympy [F]
3.4.57.7 Maxima [F(-1)]
3.4.57.8 Giac [F(-1)]
3.4.57.9 Mupad [B] (verification not implemented)

3.4.57.1 Optimal result

Integrand size = 33, antiderivative size = 371 \[ \int \frac {\tan ^4(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=-\frac {(i A+B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{5/2} d}+\frac {(i A-B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{5/2} d}+\frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {2 a \left (a^2 A b+3 A b^3-2 a^3 B-4 a b^2 B\right ) \tan ^2(c+d x)}{b^2 \left (a^2+b^2\right )^2 d \sqrt {a+b \tan (c+d x)}}+\frac {2 \left (8 a^4 A b+17 a^2 A b^3+3 A b^5-16 a^5 B-30 a^3 b^2 B-8 a b^4 B\right ) \sqrt {a+b \tan (c+d x)}}{3 b^4 \left (a^2+b^2\right )^2 d}-\frac {2 \left (4 a^3 A b+10 a A b^3-8 a^4 B-15 a^2 b^2 B-b^4 B\right ) \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b^3 \left (a^2+b^2\right )^2 d} \]

output
-(I*A+B)*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/(a-I*b)^(5/2)/d+(I* 
A-B)*arctanh((a+b*tan(d*x+c))^(1/2)/(a+I*b)^(1/2))/(a+I*b)^(5/2)/d+2/3*(8* 
A*a^4*b+17*A*a^2*b^3+3*A*b^5-16*B*a^5-30*B*a^3*b^2-8*B*a*b^4)*(a+b*tan(d*x 
+c))^(1/2)/b^4/(a^2+b^2)^2/d-2/3*(4*A*a^3*b+10*A*a*b^3-8*B*a^4-15*B*a^2*b^ 
2-B*b^4)*(a+b*tan(d*x+c))^(1/2)*tan(d*x+c)/b^3/(a^2+b^2)^2/d+2*a*(A*a^2*b+ 
3*A*b^3-2*B*a^3-4*B*a*b^2)*tan(d*x+c)^2/b^2/(a^2+b^2)^2/d/(a+b*tan(d*x+c)) 
^(1/2)+2/3*a*(A*b-B*a)*tan(d*x+c)^3/b/(a^2+b^2)/d/(a+b*tan(d*x+c))^(3/2)
 
3.4.57.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 6.39 (sec) , antiderivative size = 450, normalized size of antiderivative = 1.21 \[ \int \frac {\tan ^4(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\frac {2 B \tan ^3(c+d x)}{3 b d (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (\frac {3 (A b-2 a B) \tan ^2(c+d x)}{b d (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (\frac {3 \left (4 a A b-8 a^2 B+b^2 B\right ) \tan (c+d x)}{2 b d (a+b \tan (c+d x))^{3/2}}-\frac {3 \left (-\frac {2 \left (8 a^2 A b+A b^3-16 a^3 B+2 a b^2 B\right )}{3 b (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (\frac {\left (-\frac {3 A b^5}{2}+\frac {3}{2} a b^4 B\right ) \left (-\frac {\operatorname {Hypergeometric2F1}\left (-\frac {3}{2},1,-\frac {1}{2},\frac {a+b \tan (c+d x)}{a-i b}\right )}{3 (i a+b) (a+b \tan (c+d x))^{3/2}}+\frac {\operatorname {Hypergeometric2F1}\left (-\frac {3}{2},1,-\frac {1}{2},\frac {a+b \tan (c+d x)}{a+i b}\right )}{3 (i a-b) (a+b \tan (c+d x))^{3/2}}\right )}{b}-\frac {3}{2} b^3 B \left (-\frac {\operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {a+b \tan (c+d x)}{a-i b}\right )}{(i a+b) \sqrt {a+b \tan (c+d x)}}+\frac {\operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {a+b \tan (c+d x)}{a+i b}\right )}{(i a-b) \sqrt {a+b \tan (c+d x)}}\right )\right )}{3 b}\right )}{4 b d}\right )}{b}\right )}{3 b} \]

input
Integrate[(Tan[c + d*x]^4*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(5/2) 
,x]
 
output
(2*B*Tan[c + d*x]^3)/(3*b*d*(a + b*Tan[c + d*x])^(3/2)) + (2*((3*(A*b - 2* 
a*B)*Tan[c + d*x]^2)/(b*d*(a + b*Tan[c + d*x])^(3/2)) + (2*((3*(4*a*A*b - 
8*a^2*B + b^2*B)*Tan[c + d*x])/(2*b*d*(a + b*Tan[c + d*x])^(3/2)) - (3*((- 
2*(8*a^2*A*b + A*b^3 - 16*a^3*B + 2*a*b^2*B))/(3*b*(a + b*Tan[c + d*x])^(3 
/2)) + (2*((((-3*A*b^5)/2 + (3*a*b^4*B)/2)*(-1/3*Hypergeometric2F1[-3/2, 1 
, -1/2, (a + b*Tan[c + d*x])/(a - I*b)]/((I*a + b)*(a + b*Tan[c + d*x])^(3 
/2)) + Hypergeometric2F1[-3/2, 1, -1/2, (a + b*Tan[c + d*x])/(a + I*b)]/(3 
*(I*a - b)*(a + b*Tan[c + d*x])^(3/2))))/b - (3*b^3*B*(-(Hypergeometric2F1 
[-1/2, 1, 1/2, (a + b*Tan[c + d*x])/(a - I*b)]/((I*a + b)*Sqrt[a + b*Tan[c 
 + d*x]])) + Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Tan[c + d*x])/(a + I*b 
)]/((I*a - b)*Sqrt[a + b*Tan[c + d*x]])))/2))/(3*b)))/(4*b*d)))/b))/(3*b)
 
3.4.57.3 Rubi [A] (warning: unable to verify)

Time = 2.17 (sec) , antiderivative size = 395, normalized size of antiderivative = 1.06, number of steps used = 19, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.545, Rules used = {3042, 4088, 27, 3042, 4128, 27, 3042, 4130, 27, 3042, 4113, 3042, 4022, 3042, 4020, 25, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^4(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (c+d x)^4 (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 4088

\(\displaystyle \frac {2 \int -\frac {3 \tan ^2(c+d x) \left (\left (-2 B a^2+A b a-b^2 B\right ) \tan ^2(c+d x)-b (A b-a B) \tan (c+d x)+2 a (A b-a B)\right )}{2 (a+b \tan (c+d x))^{3/2}}dx}{3 b \left (a^2+b^2\right )}+\frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}-\frac {\int \frac {\tan ^2(c+d x) \left (\left (-2 B a^2+A b a-b^2 B\right ) \tan ^2(c+d x)-b (A b-a B) \tan (c+d x)+2 a (A b-a B)\right )}{(a+b \tan (c+d x))^{3/2}}dx}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}-\frac {\int \frac {\tan (c+d x)^2 \left (\left (-2 B a^2+A b a-b^2 B\right ) \tan (c+d x)^2-b (A b-a B) \tan (c+d x)+2 a (A b-a B)\right )}{(a+b \tan (c+d x))^{3/2}}dx}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 4128

\(\displaystyle \frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}-\frac {\frac {2 \int \frac {\tan (c+d x) \left (\left (A a^2+2 b B a-A b^2\right ) \tan (c+d x) b^2+\left (-8 B a^4+4 A b a^3-15 b^2 B a^2+10 A b^3 a-b^4 B\right ) \tan ^2(c+d x)+4 a \left (-2 B a^3+A b a^2-4 b^2 B a+3 A b^3\right )\right )}{2 \sqrt {a+b \tan (c+d x)}}dx}{b \left (a^2+b^2\right )}-\frac {2 a \left (-2 a^3 B+a^2 A b-4 a b^2 B+3 A b^3\right ) \tan ^2(c+d x)}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}-\frac {\frac {\int \frac {\tan (c+d x) \left (\left (A a^2+2 b B a-A b^2\right ) \tan (c+d x) b^2+\left (-8 B a^4+4 A b a^3-15 b^2 B a^2+10 A b^3 a-b^4 B\right ) \tan ^2(c+d x)+4 a \left (-2 B a^3+A b a^2-4 b^2 B a+3 A b^3\right )\right )}{\sqrt {a+b \tan (c+d x)}}dx}{b \left (a^2+b^2\right )}-\frac {2 a \left (-2 a^3 B+a^2 A b-4 a b^2 B+3 A b^3\right ) \tan ^2(c+d x)}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}-\frac {\frac {\int \frac {\tan (c+d x) \left (\left (A a^2+2 b B a-A b^2\right ) \tan (c+d x) b^2+\left (-8 B a^4+4 A b a^3-15 b^2 B a^2+10 A b^3 a-b^4 B\right ) \tan (c+d x)^2+4 a \left (-2 B a^3+A b a^2-4 b^2 B a+3 A b^3\right )\right )}{\sqrt {a+b \tan (c+d x)}}dx}{b \left (a^2+b^2\right )}-\frac {2 a \left (-2 a^3 B+a^2 A b-4 a b^2 B+3 A b^3\right ) \tan ^2(c+d x)}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 4130

\(\displaystyle \frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}-\frac {\frac {\frac {2 \int -\frac {-3 \left (-B a^2+2 A b a+b^2 B\right ) \tan (c+d x) b^3+\left (-16 B a^5+8 A b a^4-30 b^2 B a^3+17 A b^3 a^2-8 b^4 B a+3 A b^5\right ) \tan ^2(c+d x)+2 a \left (-8 B a^4+4 A b a^3-15 b^2 B a^2+10 A b^3 a-b^4 B\right )}{2 \sqrt {a+b \tan (c+d x)}}dx}{3 b}+\frac {2 \left (-8 a^4 B+4 a^3 A b-15 a^2 b^2 B+10 a A b^3-b^4 B\right ) \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d}}{b \left (a^2+b^2\right )}-\frac {2 a \left (-2 a^3 B+a^2 A b-4 a b^2 B+3 A b^3\right ) \tan ^2(c+d x)}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}-\frac {\frac {\frac {2 \left (-8 a^4 B+4 a^3 A b-15 a^2 b^2 B+10 a A b^3-b^4 B\right ) \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d}-\frac {\int \frac {-3 \left (-B a^2+2 A b a+b^2 B\right ) \tan (c+d x) b^3+\left (-16 B a^5+8 A b a^4-30 b^2 B a^3+17 A b^3 a^2-8 b^4 B a+3 A b^5\right ) \tan ^2(c+d x)+2 a \left (-8 B a^4+4 A b a^3-15 b^2 B a^2+10 A b^3 a-b^4 B\right )}{\sqrt {a+b \tan (c+d x)}}dx}{3 b}}{b \left (a^2+b^2\right )}-\frac {2 a \left (-2 a^3 B+a^2 A b-4 a b^2 B+3 A b^3\right ) \tan ^2(c+d x)}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}-\frac {\frac {\frac {2 \left (-8 a^4 B+4 a^3 A b-15 a^2 b^2 B+10 a A b^3-b^4 B\right ) \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d}-\frac {\int \frac {-3 \left (-B a^2+2 A b a+b^2 B\right ) \tan (c+d x) b^3+\left (-16 B a^5+8 A b a^4-30 b^2 B a^3+17 A b^3 a^2-8 b^4 B a+3 A b^5\right ) \tan (c+d x)^2+2 a \left (-8 B a^4+4 A b a^3-15 b^2 B a^2+10 A b^3 a-b^4 B\right )}{\sqrt {a+b \tan (c+d x)}}dx}{3 b}}{b \left (a^2+b^2\right )}-\frac {2 a \left (-2 a^3 B+a^2 A b-4 a b^2 B+3 A b^3\right ) \tan ^2(c+d x)}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 4113

\(\displaystyle \frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}-\frac {\frac {\frac {2 \left (-8 a^4 B+4 a^3 A b-15 a^2 b^2 B+10 a A b^3-b^4 B\right ) \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d}-\frac {\int \frac {3 b^3 \left (A a^2+2 b B a-A b^2\right )-3 b^3 \left (-B a^2+2 A b a+b^2 B\right ) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {2 \left (-16 a^5 B+8 a^4 A b-30 a^3 b^2 B+17 a^2 A b^3-8 a b^4 B+3 A b^5\right ) \sqrt {a+b \tan (c+d x)}}{b d}}{3 b}}{b \left (a^2+b^2\right )}-\frac {2 a \left (-2 a^3 B+a^2 A b-4 a b^2 B+3 A b^3\right ) \tan ^2(c+d x)}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}-\frac {\frac {\frac {2 \left (-8 a^4 B+4 a^3 A b-15 a^2 b^2 B+10 a A b^3-b^4 B\right ) \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d}-\frac {\int \frac {3 b^3 \left (A a^2+2 b B a-A b^2\right )-3 b^3 \left (-B a^2+2 A b a+b^2 B\right ) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {2 \left (-16 a^5 B+8 a^4 A b-30 a^3 b^2 B+17 a^2 A b^3-8 a b^4 B+3 A b^5\right ) \sqrt {a+b \tan (c+d x)}}{b d}}{3 b}}{b \left (a^2+b^2\right )}-\frac {2 a \left (-2 a^3 B+a^2 A b-4 a b^2 B+3 A b^3\right ) \tan ^2(c+d x)}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 4022

\(\displaystyle \frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}-\frac {-\frac {2 a \left (-2 a^3 B+a^2 A b-4 a b^2 B+3 A b^3\right ) \tan ^2(c+d x)}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {2 \left (-8 a^4 B+4 a^3 A b-15 a^2 b^2 B+10 a A b^3-b^4 B\right ) \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d}-\frac {\frac {3}{2} b^3 (a-i b)^2 (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {3}{2} b^3 (a+i b)^2 (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx+\frac {2 \left (-16 a^5 B+8 a^4 A b-30 a^3 b^2 B+17 a^2 A b^3-8 a b^4 B+3 A b^5\right ) \sqrt {a+b \tan (c+d x)}}{b d}}{3 b}}{b \left (a^2+b^2\right )}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}-\frac {-\frac {2 a \left (-2 a^3 B+a^2 A b-4 a b^2 B+3 A b^3\right ) \tan ^2(c+d x)}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {2 \left (-8 a^4 B+4 a^3 A b-15 a^2 b^2 B+10 a A b^3-b^4 B\right ) \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d}-\frac {\frac {3}{2} b^3 (a-i b)^2 (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {3}{2} b^3 (a+i b)^2 (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx+\frac {2 \left (-16 a^5 B+8 a^4 A b-30 a^3 b^2 B+17 a^2 A b^3-8 a b^4 B+3 A b^5\right ) \sqrt {a+b \tan (c+d x)}}{b d}}{3 b}}{b \left (a^2+b^2\right )}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 4020

\(\displaystyle \frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}-\frac {-\frac {2 a \left (-2 a^3 B+a^2 A b-4 a b^2 B+3 A b^3\right ) \tan ^2(c+d x)}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {2 \left (-8 a^4 B+4 a^3 A b-15 a^2 b^2 B+10 a A b^3-b^4 B\right ) \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d}-\frac {\frac {3 i b^3 (a+i b)^2 (A-i B) \int -\frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}-\frac {3 i b^3 (a-i b)^2 (A+i B) \int -\frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}+\frac {2 \left (-16 a^5 B+8 a^4 A b-30 a^3 b^2 B+17 a^2 A b^3-8 a b^4 B+3 A b^5\right ) \sqrt {a+b \tan (c+d x)}}{b d}}{3 b}}{b \left (a^2+b^2\right )}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}-\frac {-\frac {2 a \left (-2 a^3 B+a^2 A b-4 a b^2 B+3 A b^3\right ) \tan ^2(c+d x)}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {2 \left (-8 a^4 B+4 a^3 A b-15 a^2 b^2 B+10 a A b^3-b^4 B\right ) \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d}-\frac {-\frac {3 i b^3 (a+i b)^2 (A-i B) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}+\frac {3 i b^3 (a-i b)^2 (A+i B) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}+\frac {2 \left (-16 a^5 B+8 a^4 A b-30 a^3 b^2 B+17 a^2 A b^3-8 a b^4 B+3 A b^5\right ) \sqrt {a+b \tan (c+d x)}}{b d}}{3 b}}{b \left (a^2+b^2\right )}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}-\frac {-\frac {2 a \left (-2 a^3 B+a^2 A b-4 a b^2 B+3 A b^3\right ) \tan ^2(c+d x)}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {2 \left (-8 a^4 B+4 a^3 A b-15 a^2 b^2 B+10 a A b^3-b^4 B\right ) \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d}-\frac {\frac {3 b^2 (a-i b)^2 (A+i B) \int \frac {1}{-\frac {i \tan ^2(c+d x)}{b}-\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{d}+\frac {3 b^2 (a+i b)^2 (A-i B) \int \frac {1}{\frac {i \tan ^2(c+d x)}{b}+\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{d}+\frac {2 \left (-16 a^5 B+8 a^4 A b-30 a^3 b^2 B+17 a^2 A b^3-8 a b^4 B+3 A b^5\right ) \sqrt {a+b \tan (c+d x)}}{b d}}{3 b}}{b \left (a^2+b^2\right )}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {2 a (A b-a B) \tan ^3(c+d x)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}-\frac {-\frac {2 a \left (-2 a^3 B+a^2 A b-4 a b^2 B+3 A b^3\right ) \tan ^2(c+d x)}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {2 \left (-8 a^4 B+4 a^3 A b-15 a^2 b^2 B+10 a A b^3-b^4 B\right ) \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d}-\frac {\frac {2 \left (-16 a^5 B+8 a^4 A b-30 a^3 b^2 B+17 a^2 A b^3-8 a b^4 B+3 A b^5\right ) \sqrt {a+b \tan (c+d x)}}{b d}+\frac {3 b^3 (a+i b)^2 (A-i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}+\frac {3 b^3 (a-i b)^2 (A+i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}}{3 b}}{b \left (a^2+b^2\right )}}{b \left (a^2+b^2\right )}\)

input
Int[(Tan[c + d*x]^4*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(5/2),x]
 
output
(2*a*(A*b - a*B)*Tan[c + d*x]^3)/(3*b*(a^2 + b^2)*d*(a + b*Tan[c + d*x])^( 
3/2)) - ((-2*a*(a^2*A*b + 3*A*b^3 - 2*a^3*B - 4*a*b^2*B)*Tan[c + d*x]^2)/( 
b*(a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]]) + ((2*(4*a^3*A*b + 10*a*A*b^3 - 
8*a^4*B - 15*a^2*b^2*B - b^4*B)*Tan[c + d*x]*Sqrt[a + b*Tan[c + d*x]])/(3* 
b*d) - ((3*(a + I*b)^2*b^3*(A - I*B)*ArcTan[Tan[c + d*x]/Sqrt[a - I*b]])/( 
Sqrt[a - I*b]*d) + (3*(a - I*b)^2*b^3*(A + I*B)*ArcTan[Tan[c + d*x]/Sqrt[a 
 + I*b]])/(Sqrt[a + I*b]*d) + (2*(8*a^4*A*b + 17*a^2*A*b^3 + 3*A*b^5 - 16* 
a^5*B - 30*a^3*b^2*B - 8*a*b^4*B)*Sqrt[a + b*Tan[c + d*x]])/(b*d))/(3*b))/ 
(b*(a^2 + b^2)))/(b*(a^2 + b^2))
 

3.4.57.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4020
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[c*(d/f)   Subst[Int[(a + (b/d)*x)^m/(d^2 + 
c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]
 

rule 4022
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(c + I*d)/2   Int[(a + b*Tan[e + f*x])^m*( 
1 - I*Tan[e + f*x]), x], x] + Simp[(c - I*d)/2   Int[(a + b*Tan[e + f*x])^m 
*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c 
 - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]
 

rule 4088
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(b*c - a*d)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x 
])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Simp[1/(d*(n + 1)*(c^2 + d^2)) 
  Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)*Simp[a*A*d* 
(b*d*(m - 1) - a*c*(n + 1)) + (b*B*c - (A*b + a*B)*d)*(b*c*(m - 1) + a*d*(n 
 + 1)) - d*((a*A - b*B)*(b*c - a*d) + (A*b + a*B)*(a*c + b*d))*(n + 1)*Tan[ 
e + f*x] - b*(d*(A*b*c + a*B*c - a*A*d)*(m + n) - b*B*(c^2*(m - 1) - d^2*(n 
 + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && 
 NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] & 
& LtQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 4113
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + 
 b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])^m*Si 
mp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && 
NeQ[A*b^2 - a*b*B + a^2*C, 0] &&  !LeQ[m, -1]
 

rule 4128
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*d^2 + c*(c*C - B*d))*(a + b*Tan[e + 
 f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Sim 
p[1/(d*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e 
 + f*x])^(n + 1)*Simp[A*d*(b*d*m - a*c*(n + 1)) + (c*C - B*d)*(b*c*m + a*d* 
(n + 1)) - d*(n + 1)*((A - C)*(b*c - a*d) + B*(a*c + b*d))*Tan[e + f*x] - b 
*(d*(B*c - A*d)*(m + n + 1) - C*(c^2*m - d^2*(n + 1)))*Tan[e + f*x]^2, x], 
x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ 
[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] && LtQ[n, -1]
 

rule 4130
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_. 
) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*(a + b*Tan[e + f*x])^m*((c + d*Tan[ 
e + f*x])^(n + 1)/(d*f*(m + n + 1))), x] + Simp[1/(d*(m + n + 1))   Int[(a 
+ b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n*Simp[a*A*d*(m + n + 1) - C 
*(b*c*m + a*d*(n + 1)) + d*(A*b + a*B - b*C)*(m + n + 1)*Tan[e + f*x] - (C* 
m*(b*c - a*d) - b*B*d*(m + n + 1))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, 
b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && 
 NeQ[c^2 + d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[ 
c, 0] && NeQ[a, 0])))
 
3.4.57.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(4591\) vs. \(2(339)=678\).

Time = 0.20 (sec) , antiderivative size = 4592, normalized size of antiderivative = 12.38

method result size
parts \(\text {Expression too large to display}\) \(4592\)
derivativedivides \(\text {Expression too large to display}\) \(12953\)
default \(\text {Expression too large to display}\) \(12953\)

input
int(tan(d*x+c)^4*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x,method=_RETURNV 
ERBOSE)
 
output
A*(-3/4/d*b^3/(a^2+b^2)^(7/2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2) 
+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)* 
a+1/d/b/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2) 
^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)) 
*a^4-1/d/b/(a^2+b^2)^(7/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b 
^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/ 
2))*a^6-4/d*b/(a^2+b^2)^(7/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^ 
2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^ 
(1/2))*a^4-1/d*b^3/(a^2+b^2)^(7/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((( 
2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)- 
2*a)^(1/2))*a^2-1/4/d/b/(a^2+b^2)^(7/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c)) 
^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2 
*a)^(1/2)*a^5+1/2/d*b/(a^2+b^2)^(7/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^( 
1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a 
)^(1/2)*a^3+3/4/d*b^3/(a^2+b^2)^(7/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^( 
1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a 
)^(1/2)*a-1/d/b/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a 
+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a 
)^(1/2))*a^4+1/d/b/(a^2+b^2)^(7/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2 
*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/...
 
3.4.57.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 7358 vs. \(2 (334) = 668\).

Time = 2.20 (sec) , antiderivative size = 7358, normalized size of antiderivative = 19.83 \[ \int \frac {\tan ^4(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate(tan(d*x+c)^4*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algorith 
m="fricas")
 
output
Too large to include
 
3.4.57.6 Sympy [F]

\[ \int \frac {\tan ^4(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \tan ^{4}{\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate(tan(d*x+c)**4*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(5/2),x)
 
output
Integral((A + B*tan(c + d*x))*tan(c + d*x)**4/(a + b*tan(c + d*x))**(5/2), 
 x)
 
3.4.57.7 Maxima [F(-1)]

Timed out. \[ \int \frac {\tan ^4(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(tan(d*x+c)^4*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algorith 
m="maxima")
 
output
Timed out
 
3.4.57.8 Giac [F(-1)]

Timed out. \[ \int \frac {\tan ^4(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(tan(d*x+c)^4*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algorith 
m="giac")
 
output
Timed out
 
3.4.57.9 Mupad [B] (verification not implemented)

Time = 47.63 (sec) , antiderivative size = 9547, normalized size of antiderivative = 25.73 \[ \int \frac {\tan ^4(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

input
int((tan(c + d*x)^4*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(5/2),x)
 
output
(log((((a + b*tan(c + d*x))^(1/2)*(320*A^2*a^4*b^14*d^3 - 16*A^2*b^18*d^3 
+ 1024*A^2*a^6*b^12*d^3 + 1440*A^2*a^8*b^10*d^3 + 1024*A^2*a^10*b^8*d^3 + 
320*A^2*a^12*b^6*d^3 - 16*A^2*a^16*b^2*d^3) - ((((320*A^4*a^2*b^8*d^4 - 16 
*A^4*b^10*d^4 - 1760*A^4*a^4*b^6*d^4 + 1600*A^4*a^6*b^4*d^4 - 400*A^4*a^8* 
b^2*d^4)^(1/2) - 4*A^2*a^5*d^2 + 40*A^2*a^3*b^2*d^2 - 20*A^2*a*b^4*d^2)/(a 
^10*d^4 + b^10*d^4 + 5*a^2*b^8*d^4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a 
^8*b^2*d^4))^(1/2)*(((((320*A^4*a^2*b^8*d^4 - 16*A^4*b^10*d^4 - 1760*A^4*a 
^4*b^6*d^4 + 1600*A^4*a^6*b^4*d^4 - 400*A^4*a^8*b^2*d^4)^(1/2) - 4*A^2*a^5 
*d^2 + 40*A^2*a^3*b^2*d^2 - 20*A^2*a*b^4*d^2)/(a^10*d^4 + b^10*d^4 + 5*a^2 
*b^8*d^4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^8*b^2*d^4))^(1/2)*(a + b* 
tan(c + d*x))^(1/2)*(64*a*b^22*d^5 + 640*a^3*b^20*d^5 + 2880*a^5*b^18*d^5 
+ 7680*a^7*b^16*d^5 + 13440*a^9*b^14*d^5 + 16128*a^11*b^12*d^5 + 13440*a^1 
3*b^10*d^5 + 7680*a^15*b^8*d^5 + 2880*a^17*b^6*d^5 + 640*a^19*b^4*d^5 + 64 
*a^21*b^2*d^5))/4 - 32*A*b^21*d^4 - 160*A*a^2*b^19*d^4 - 128*A*a^4*b^17*d^ 
4 + 896*A*a^6*b^15*d^4 + 3136*A*a^8*b^13*d^4 + 4928*A*a^10*b^11*d^4 + 4480 
*A*a^12*b^9*d^4 + 2432*A*a^14*b^7*d^4 + 736*A*a^16*b^5*d^4 + 96*A*a^18*b^3 
*d^4))/4)*(((320*A^4*a^2*b^8*d^4 - 16*A^4*b^10*d^4 - 1760*A^4*a^4*b^6*d^4 
+ 1600*A^4*a^6*b^4*d^4 - 400*A^4*a^8*b^2*d^4)^(1/2) - 4*A^2*a^5*d^2 + 40*A 
^2*a^3*b^2*d^2 - 20*A^2*a*b^4*d^2)/(a^10*d^4 + b^10*d^4 + 5*a^2*b^8*d^4 + 
10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^8*b^2*d^4))^(1/2))/4 + 96*A^3*a^3...